社交媒体越来越多地用于大规模的人口预测,例如估计社区健康统计数据。但是,社交媒体用户通常不是预期人群的代表性样本 - “选择偏见”。在社会科学中,这种偏见通常是通过约束技术解决的,在这种偏见的情况下,根据其社会人口统计学群体的不足或过度采样,将观察结果重新恢复。然而,很少评估约束性以改善预测。在这项两部分的研究中,我们首先评估了标准“现成”的限制技术,发现它们在四个从Twitter中介绍美国县人口健康统计数据的四个任务中没有提供任何改进,甚至通常会退化预测准确性。降级表现的核心原因似乎与他们对每个人群社会人口统计学的稀疏或缩减估计的依赖有关。在研究的第二部分中,我们开发和评估了强大的阶段化后,该方法包括解决这些问题的三种方法:(1)估算器重新分布以说明缩小的缩小,以及(2)自适应式嵌套和(3)告知平滑为处理稀疏的社会人口统计学估计。我们表明,这些方法中的每一种都会导致预测准确性比标准限制方法显着改善。综上所述,强大的后阶段能够实现最先进的预测准确性,在调查的生活满意度的情况下,解释的方差(R^2)增加了53.0%,所有任务的平均平均值增加了17.8%。
translated by 谷歌翻译
This paper presents a novel federated reinforcement learning (Fed-RL) methodology to enhance the cyber resiliency of networked microgrids. We formulate a resilient reinforcement learning (RL) training setup which (a) generates episodic trajectories injecting adversarial actions at primary control reference signals of the grid forming (GFM) inverters and (b) trains the RL agents (or controllers) to alleviate the impact of the injected adversaries. To circumvent data-sharing issues and concerns for proprietary privacy in multi-party-owned networked grids, we bring in the aspects of federated machine learning and propose a novel Fed-RL algorithm to train the RL agents. To this end, the conventional horizontal Fed-RL approaches using decoupled independent environments fail to capture the coupled dynamics in a networked microgrid, which leads us to propose a multi-agent vertically federated variation of actor-critic algorithms, namely federated soft actor-critic (FedSAC) algorithm. We created a customized simulation setup encapsulating microgrid dynamics in the GridLAB-D/HELICS co-simulation platform compatible with the OpenAI Gym interface for training RL agents. Finally, the proposed methodology is validated with numerical examples of modified IEEE 123-bus benchmark test systems consisting of three coupled microgrids.
translated by 谷歌翻译
Counterfactual Explanations are becoming a de-facto standard in post-hoc interpretable machine learning. For a given classifier and an instance classified in an undesired class, its counterfactual explanation corresponds to small perturbations of that instance that allows changing the classification outcome. This work aims to leverage Counterfactual Explanations to detect the important decision boundaries of a pre-trained black-box model. This information is used to build a supervised discretization of the features in the dataset with a tunable granularity. Using the discretized dataset, a smaller, therefore more interpretable Decision Tree can be trained, which, in addition, enhances the stability and robustness of the baseline Decision Tree. Numerical results on real-world datasets show the effectiveness of the approach in terms of accuracy and sparsity compared to the baseline Decision Tree.
translated by 谷歌翻译
最近已扩展了最小方形聚类(MSSC)或K-均值类型聚类的最小总和,以利用每个群集的基数的先验知识。这种知识用于提高性能以及解决方案质量。在本文中,我们提出了一种基于分支和切割技术的精确方法,以解决基数受限的MSSC。对于下边界的例程,我们使用Rujeerapaiboon等人最近提出的半决赛编程(SDP)放松。 [Siam J. Optim。 29(2),1211-1239,(2019)]。但是,这种放松只能用于小型实例中的分支和切割方法。因此,我们得出了一种新的SDP松弛,该松弛随着实例大小和簇的数量更好。在这两种情况下,我们都通过添加多面体切割来增强结合。从量身定制的分支策略中受益,该策略会实施成对的约束,我们减少了儿童节点中出现的问题的复杂性。相反,对于上限,我们提出了一个本地搜索过程,该过程利用在每个节点上求解的SDP松弛的解。计算结果表明,所提出的算法在全球范围内首次求解了大小的现实实例,比通过最新精确方法求解的算法大10倍。
translated by 谷歌翻译
近年来,深度学习(DL)算法的使用改善了基于视觉的空间应用的性能。但是,生成大量的注释数据来培训这些DL算法已被证明具有挑战性。虽然可以使用合成生成的图像,但在实际环境中测试时,经过合成数据训练的DL模型通常容易受到性能降解。在这种情况下,卢森堡大学的安全,可靠性和信任(SNT)跨学科中心开发了“ SNT Zero-G Lab”,用于在模拟现实世界太空环境的条件下培训和验证基于视觉的空间算法。 SNT Zero-G实验室开发的一个重要方面是设备选择。从实验室开发过程中学到的经验教训,本文提出了一种系统的方法,将市场调查和设备选择的实验分析结合在一起。特别是,本文专注于太空实验室中的图像采集设备:背景材料,相机和照明灯。实验分析的结果表明,在太空实验室开发项目中选择有效的设备选择需要通过实验分析来称赞的市场调查。
translated by 谷歌翻译
机器学习(ML)研究通常集中在模型上,而最突出的数据集已用于日常的ML任务,而不考虑这些数据集对基本问题的广度,困难和忠诚。忽略数据集的基本重要性已引起了重大问题,该问题涉及现实世界中的数据级联以及数据集驱动标准的模型质量饱和,并阻碍了研究的增长。为了解决此问题,我们提出Dataperf,这是用于评估ML数据集和数据集工作算法的基准软件包。我们打算启用“数据棘轮”,其中培训集将有助于评估相同问题的测试集,反之亦然。这种反馈驱动的策略将产生一个良性的循环,该循环将加速以数据为中心的AI。MLCommons协会将维护Dataperf。
translated by 谷歌翻译
机器学习(ML)可以改善和自动化质量控制(QC)在注塑制造中。但是,由于广泛的现实过程数据的标签成本很高,因此,模拟过程数据的使用可能会为成功实施提供第一步。在这项研究中,模拟数据用于开发一个预测模型,以针对注射成型排序容器的产品质量。测试集中达到的准确性,特异性和敏感性分别为$ 99.4 \%$,$ 99.7 \%$和$ 94.7 \%$。因此,这项研究表明了ML在注射成型中对自动化QC的潜力,并鼓励扩展到接受现实世界数据的ML模型。
translated by 谷歌翻译
置换不变的神经网络是从集合进行预测的有前途的工具。但是,我们表明,现有的置换式体系结构,深度集和固定的变压器可能会在深度时消失或爆炸。此外,层规范(SET变压器中选择的归一化)可能会通过删除对预测有用的信息来损害性能。为了解决这些问题,我们介绍了白皮剩余连接的干净路径原理,并开发了设置规范,这是针对集合量身定制的标准化。有了这些,我们构建了Deep Sets ++和SET Transformer ++,该模型比其在各种任务套件上的原始配对品具有可比性或更好的性能。我们还引入了Flow-RBC,这是一种新的单细胞数据集和置换不变预测的现实应用。我们在此处开放数据和代码:https://github.com/rajesh-lab/deep_permunt_invariant。
translated by 谷歌翻译
保持最新的地图以反映现场的最新变化非常重要,尤其是在涉及在延长环境中操作的机器人重复遍历的情况。未发现的变化可能会导致地图质量恶化,导致本地化差,操作效率低下和机器人丢失。体积方法,例如截断的签名距离功能(TSDF),由于其实时生产致密而详细的地图,尽管在随着时间的推移随着时间的流逝而变化的地图更新仍然是一个挑战,但由于它们的实时生产而迅速获得了吸引力。我们提出了一个框架,该框架引入了一种新颖的概率对象状态表示,以跟踪对象在半静态场景中的姿势变化。该表示为每个对象共同对平稳性评分和TSDF变更度量进行建模。同时加入几何信息和语义信息的贝叶斯更新规则被得出以实现一致的在线地图维护。为了与最先进的方法一起广泛评估我们的方法,我们在仓库环境中发布了一个新颖的现实数据集。我们还评估了公共Toycar数据集。我们的方法优于半静态环境重建质量的最先进方法。
translated by 谷歌翻译
估计值函数是增强学习算法的核心组件。时间差异(TD)学习算法使用自引导,即,它们在随后的时间步骤中使用值估计更新朝向学习目标的值函数。或者,可以朝着通过单独预测继承人特征(SF)构成的学习目标来更新值函数 - 依赖于策略的模型 - 并将它们与瞬时奖励相结合。我们专注于在估计值函数时使用的自举目标,并提出新的备份目标,它是\ eta $ -return混合的混合,它隐含地结合了价值预测知识(由TD方法使用)与(继承人)特征预测知识 - 使用参数$ \ eta $捕获每个依赖的多少。我们说明通过$ \ eta \ gamma $ -dicounted sf模型结合了预测知识使得更有效地利用采样体验,而不是完全在价值函数估计上,或者在单独估计的继承功能的乘积上启动。和瞬时奖励模型。我们经验显示这种方法导致更快的政策评估和更好的控制性能,用于表格和非线性函数近似,指示可扩展性和一般性。
translated by 谷歌翻译